INTRA- AND INTER-MOLECULAR CARBON-CARBON BOND FORMATION BY PHOTOSENSITIZED OXYGENATION OF VINYLFERROCENES^{1,2}

Masao HISATOME*, Tomiki HASHIYAMA, and Koji YAMAKAWA* Faculty of Pharmaceutical Sciences, Science University of Tokyo 12 Ichigaya Funagawara-machi, Shinjuku-ku, Tokyo 162, Japan

In the series of the study on the reaction of ferrocene derivatives with molecular oxygen, we have reported³⁻⁵ that vinylferrocenes (I, V) were oxidized with oxygen gas in the presence of mineral acids, Lewis acids or silica gel in the dark to give six-membered cyclic peroxides (II) and/or their derivatives (III, IV, VII and others) through intra- and inter-molecular cyclizations. The vinylferrocenes were autoxidized neither under the basic condition nor on alumina. This communication describes that the same oxidative cyclization as in the acid-catalyzed autoxidation resulted from photosensitized oxygenation of the vinylferrocenes under the basic condition.

Irradiation of 1,1'-divinylferrocene derivatives (I) in the presence of sodium copper-chlorophillin (sensitizer) while bubbling through dry O₂ gas produced various [4]ferrocenophane derivatives; peroxide (IIa), diols (IIIa-c), ketals (IVa, IVc) and others.⁶ The diols (III) and ketals (IV) are chemical transformation products of the peroxides (II) in the reaction system or in the work-up, as shown in the previous reports.⁴ Since all other [4]ferrocenophane derivatives are evidently those derived from the diols (III) or ketals (IV),⁴ the yields of those derivatives are included into the ones of the diols (III) and ketals (IV), respectively, in Table 1.

When sodium copper-chlorophillin was absent, irradiation of divinylferrocene (Ia) gave only trace amount of ketal (IVa). The oxidation was dramatically inhibited by addition of 1,4-diazabicyclo[2.2.2]octane (DABCO), an efficient quencher of singlet molecular oxygen $({}^{1}\Delta)$. Therefore, involvement of

3759

(Fc: Ferrocenyl group)

singlet oxygen in the oxygenation was secured. The reactivity in the photosensitized oxidative cyclization of I in CH₂Cl₂ indicated the same tendency as the acid-catalyzed autoxidation; decreasing in the total yields in the order of Ia > Ic > Ib.

Irradiation of vinylferrocene (Va) in the absence of both alumina⁸ and sensitizer gave no dimerization product (VII). Since the oxygenation in hexane or other solvents afforded only a slight amount of dimerization products even in the presence of alumina, the vinylferrocene (Va) and sensitizer absorbed on alumina were directly irradiated under an O_2 atmosphere. In the reaction system without solvent, the total yield of the diol (VII) and its dehydrated compounds^{3,5} increased with prolong of reaction time.

Intramolecular carbon-carbon bond formation in photosensitized oxygenation of quadricyclane and norbornadiene, conformationally rigid compounds, was described by Itô et al.⁹ as a new type reaction with singlet oxygen. However, there has been no report that two independent olefin molecules and a singlet molecular oxygen formed intermolecularly a carbon-carbon bond to give oxidative

vinylferrocenes.
of
autoxidation
ed
-catalyz
acid
and
oxygenation
Photosensitized
Table l

Starting	Conditior	q^{su}		Recovered olefin(%)		$\tt Products(\$)^{\it C}$		
material ⁴	Additions	Solvent	Time (hr)	I OF V	Peroxide II	Diol III or VII	Ketal IV	Total
(Photosen:	sitized oxygenation)							
Ia	Sensitizer	cH ₂ C1 ₂	1	1.2	88.4		0.8	89.2
Ia	Sensitizer	сн _з он	г		trace	22.8	18.4	41.2
Ia	No-sensitizer, CH_3COONa^6	⁴ cH ₂ Cl ₂	I	75.0			trace	trace
Ia	Sensitizer and \mathtt{DABCO}^{e}	$c_{H_{2}}c_{1_{2}}$	I	69.5	trace	1.2	4.3	5.5
Πb	Sensitizer	cH_c1,	Т	85.5		7.2		7.2
Ib	Sensitizer	$c_{H_2}c_{1_2}$	14	9.2		24.5		24.5
Ib	Sensitizer	сн,с1,-сн,он	1	56.7		15.5		15.5
Ib	Sensitizer	сн ₂ с1 ₂ -сн ₃ он	ß	31.3		44.2		44.2
IC	Sensitizer	cH,cl,	1	89.4		8.2	trace	8.2
IC	Sensitizer	cH_cl_	14			26.8	7.2	34.0
Va	Sensitizer and alumina	1	9	91.6		7.3		7.3
Va	Sensitizer and alumina		24	76.2		14.1		14.1
Va	Sensitizer and alumina	Hexane	5	62.5		0.8		0.8
(Acid-cate	<pre>ilyzed autoxidation)</pre>							
Iaf	WC1 ₆	cH,cl,	0.25		59.0	34.0	trace	93.0
ID	WCLG	$cc1_{A}$	Ч	5.4		14.0		14.0
IC	7N-HC1	Benzene	Ч			19.0	4.5	23.5
va^{g}	Silica gel	Hexane	ß	47.8		36.4		36.4
а. Тра иі	nvlferrocenes were used as	s starting mat	terials	immediatel	v after br	eparations.	b. Trra	diation

Sensitizer: sodium copper-chlorophillin. a. A small amount of the corresponding acylferrocene was produced in each reaction besides cyclization products. d. Since the sensitizer is a base, CH₃COONa was added in order e. 1,4-Diazabicyclo[2.2.2]octane. f. The unpublished in solution was carried out by an internal method with sodium vapor lamp (Toshiba SL-Na-50). g. The result in References and Notes 3. results obtained so far in the highest yields. to make the blank experimental system basic. a

dimerization products.¹⁰ It is also interesting that the photosensitized oxygenation produced the same products as in the acid-catalyzed autoxidation.³⁻⁵ These results seem to suggest activation of triplet molecular oxygen in ground state (${}^{3}\Sigma$) into singlet state (${}^{1}\Delta$) in the autoxidation system.¹²

REFERENCES AND NOTES

- Organometallic Compounds XXIX. For part XXVIII, see References and Notes 3.
- Presented in part at 10th Symposium on Nonbenzenoid Aromatic Compounds, Matsuyama, Oct. 18-19, 1977, Abstracts, pp.40-43.
- M. Hisatome, S. Koshikawa, K. Chimura, H. Hashimoto, and K. Yamakawa, J. Organometal. Chem., 145, 225 (1978).
- 4. a. M. Hisatome and K. Yamakawa, J. Chem. Soc. Chem. Commun., 199 (1973);
 b. M. Hisatome, S. Minagawa, and K. Yamakawa, J. Organometal. Chem., <u>55</u>, C82 (1973);
 c. M. Hisatome, T. Namiki, and K. Yamakawa, J. Organometal. Chem., <u>96</u>, C55 (1975);
 d. M. Hisatome, T. Namiki, and K. Yamakawa, J. Organometal. Chem., 117, C23 (1976).
- 5. M. Hisatome, S. Koshikawa, and K. Yamakawa, Chem. Lett., 789 (1975).
- 6. All new compounds (diol IIIc, ketal IVc, 6-methyl-9-phenyl-6,9-oxa[4]ferrocenophane VIII and l'-(1-methylcyclopropyl)benzoylferrocene IX) obtained in the present work gave satisfactory spectral data and elemental analyses.
- 7. C. Ouannès and T. Wilson, J. Am. Chem. Soc., <u>90</u>, 6527 (1968).
- 8. The alumina is, possibly, required as an absorbent for effective dimerization due to approach of olefin molecules each other.
- 9. T. Kobayashi, M. Kodama, and S. Itô, Tetrahedron Lett., 655 (1975).
- 10. Some evidences for dimerizations of electron-rich olefins by autoxidation have been reported¹¹ besides our acid-catalyzed autoxidation.^{3,5}
- 11. a. G. Wittig and W. Gauss, Chem. Ber., <u>80</u>, 363 (1947); b. A.N. Fletcher and C.A. Heller, J. Phys. Chem., <u>71</u>, 1507 (1967).
- Further experimental results on the mechanism of the autoxidation will be reported elsewhere.

(Received in Japan 28 June 1978; received in UK for publication 1 August 1978)